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The nature of the countercation is a major factor in
determining solid-state architectures and properties of
7,7′,8,8′-tetracyano-p-quinodimethane (TCNQ) salts.1 A
number of different types of ion pair association are
observed with organic cations,2 but in the case of metal
ion salts cation interaction with the nitrogen lone pairs
dominates3 though the TCNQ radical anion (TCNQ•-)
is still sometimes regarded as a relatively poor ligand.4
Ionophore encapsulation of a cation5 provides a

potentially versatile means of constraining and control-
ling ion-pair association, particularly in the solid state.
For example, while extended TCNQ•- stacks are found
in KTCNQ and RbTCNQ,1 the solid-state structures of
their 18-crown-6 complexes 1 and 2 reveal brickwork
lattices of dimers. Such structures reflect the need to
accommodate both the bulk of the crown ether and tight

ion-pair interactions.6 These complexed salts (and their
thallium(I) analogue 3,7 in which a stereochemically
active lone pair also plays a structural role), show
thermally activated triplet exciton behavior which is
dependent both on the nature of the counterion and on
the solid-state architecture.8,9 In an attempt to probe
such phenomena in more detail, we now report the effect
of total cation encapsulation on the properties of the
material (15-crown-5)2KTCNQ (4). Once again we
observe the formation of isolated TCNQ•- dimers with
the concomitant presence of thermally activated triplet
exciton behavior.10
Although the solid-state structure of 4 is significantly

disordered at room temperature, this study allows a
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I ) A
T[exp( JkT) + 3]-1

where I is the line intensity, T the temperature, k the Boltzman
constant, A the preexponential constant, and J the activation energy
for triplet production.
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direct comparison between the physical properties
exhibited by this material and its solid-state architec-
ture. The structural determination reveals sheets of
TCNQ radical anion dimers surrounded by (15-crown-
5)2K+ barrels (Figure 1), a very different situation from
that observed for the 1:1:1 (crown:metal:TCNQ) salts,
1-3. The presence of the ionophore inhibits direct
cation-anion coordination and gives a structure in
which the TCNQ•- dimers can be regarded as effectively
isolated both from the countercations and from other
TCNQ•- dimers. A more detailed examination reveals
a pattern constructed from pairs of cation barrels
bridged by a TCNQ•- dimer (Figure 2), the counterions
within each “building-brick” being arranged so as to
optimize electrostatic interactions. Figure 3 depicts the
labeling scheme together with the thermal vibration
ellipsoids, and it is interesting that the crown ether unit

nearest to the TCNQ•- dimer is noticeably more ordered
than its more remote partner within each cation sand-
wich.
This material provides a unique opportunity to in-

vestigate the behavior of an isolated TCNQ•- dimer in
the solid-state. Table 1 compares key features of the
solid-state structure of 4 with those of the other iono-
phore MTCNQ complexes 1-3. These data suggest that
while there is no clear correlation between perpendicu-
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available on request from the Director of the Cambridge Crystal-
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Table 1. Comparison of the Solid-State Structures of TCNQ Salts 1-5

1 2 3 4 5

TCNQ slip
short axis (Å) 0.33 0.50 0.69 1.28 1.00
short axis (deg) 5.8 8.9 12.4 22.1 17.65
long axis (Å) 0.08 0.07 0.10 0.00 0.03
long axis (deg) 1.4 1.3 1.7 0.0 0.5
perpendicular intradimer TCNQ spacing (Å) 3.23 3.19 3.15 3.16 3.15
closest cation-TCNQ distance (Å) 2.845(2)a 2.980(6)a 2.986(6)a 5.65a 3.63 (π+π-)b

a CN‚‚‚M+ distance. b Vertical π-π interplanar distance.

Figure 1. Side and top views of the solid-state structure of
(15-crown-5)2KTCNQ (4).

Figure 2. Side and top views of a TCNQ•- dimer unit of 4;
the counterions are arranged so as to optimize electrostatic
interactions.
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lar intra-TCNQ•- dimer spacing and the nature of cation
association with the TCNQ•- moieties, short axis slip
is greatest (22.1°) in the least coordinated structure (4)
a situation previously noted in TCNQ salts of organic
cations.2
Further insight into the electronic behavior of crystals

of 4 has been obtained from variable-temperature ESR
experiments. The angular dependence of ESR spectra
of a single crystal of 4 were recorded for a 360° rotation
(5° increments) at several different crystal orientations
over a wide temperature range (105-455 K). Figure 4
shows the spectral variation for one such rotation and
has inset the temperature dependence of the line
intensities.
In general two species are observed of which the

central feature A is invariant in position but has a
somewhat anisotropic line width. The resonance for
species B is, however, highly anisotropic and very
temperature dependent. Such behavior is typical of the

dipolar fine structure (zero-field splitting) of an excited
triplet exciton state.8 Fitting the intensity versus line
integral data between 105 and 330 K to the equation
in ref 9 using nonlinear regression techniques leads to
an activation energy for triplet production (J) of
0.15(3) eV. This value is significantly lower than those
observed (≈0.38 eV) for the 18-crown-6 complexes 1 and
2 and suggests that metal-ion coordination to the
TCNQ•- dimer dramatically increases the activation
energy for localized triplet exciton formation. Species
A shows behavior typical of doublet impurity (crystal
defects leading to the presence of isolated TCNQ•-

monomers); this interpretation is supported by the
observation that the presence of the “impurity-line”15
species A is very sample dependent, whereas the
magnitude of J for species B has been found to be almost
identical for a number of samples. No hyperfine split-
tings are observed in any part of the spectrum. Above
330 K the population of the triplet state becomes
saturated and no further increase in line intensity is
seen, but at the highest temperatures accessible without
decomposition the onset of coalescence phenomena is
evident, such spectral changes being reversible. This
coalescence is attributed to exciton-exciton collision
broadening.16

In crystals of 4 there is a notable absence of the
diffuse (Wannier) triplet exciton behavior, a phenom-
enon often present in the alkali-metal TCNQ•- salts17
and their 18-crown-6 complexes, e.g., 1-3.6-8 This
observation emphasises the isolated nature of the
TCNQ•- dimer units in 4.
As expected from its solid-state structure, 4 is insu-

lating (compressed powder σ293 ) 8.6× 10-11 S/cm) with
an activation energy (Ea ) 0.62(4) eV) which is markedly
greater than that for triplet exciton production. Mag-

(15) Minute paramagnetic impurities (≈0.1%) can cause large ESR
signals, in comparison with observed triplet lines. This is because the
triplet state is only partially populated (probably less than 5%),
whereas the paramagnetic impurity is observed in its entirety.
Chestnut, D. B.; Foster, H.; Phillips, W. D. J. Chem. Phys. 1961, 34,
684-685.

(16) Morton, J. R.; Preston, K. F.; Ward, M. D.; Fagan, P. J. J.
Chem. Phys. 1989, 90, 2148-2153.

(17) Vlasova, R. M.; Smirnov, I. A.; Sochava, L. S.; Sherle, A. I. Sov.
Phys.sSolid State 1969, 10, 2359-2362.

Figure 3. Thermal vibration ellipsoid plot.

Figure 4. Angular dependence of the ESR spectrum of a
single crystal of 4; inset I shows the temperature dependence
(boxes) of species B and the fit to the singlet-triplet model
(line); inset II shows the temperature dependence of the
“impurity-line”15 species A.

Communications Chem. Mater., Vol. 8, No. 5, 1996 979



netic susceptibility measurements reveal that 4 shows
diamagnetic behavior at room temperature.
Another material of particular interest in the present

context is the dimeric (paramagnetic) phase of deca-
methylferricenium-TCNQ•-18 (5) in which the cylindri-
cal nature of the cation is directly analogous to the
structure (15-crown-5)2K+ in 4. Structure 5might also
be expected to contain isolated TCNQ•- dimers, but a
reexamination of its solid-state architecture19 suggests
that there are {C-H‚‚‚N} hydrogen-bond-like electro-
static ordering interactions between the methyl groups
(on the ordered cyclopentadienyl ring) and the TCNQ•-

nitrile substituents. The extent of short-axis slip in 5

lies intermediate between those seen for the strongly
metal-ion-coordinated structures 1-3 and that found in

[(15-crown-5)2KTCNQ] (4) emphasizing the isolated
nature of the TCNQ•- dimer in 4.
The salt 4 provides the first example of a structure

in which there is no evidence for direct cation‚‚‚TCNQ
dimer association through direct metal-ion coordination,
close heteroatom contact (such as the S‚‚‚N interaction
in TTF-TCNQ), π-π face-to-face association, or hydro-
gen bonding.2 The disordered nature of the crown ether
rings and the absence of closer than van der Waals
contacts between TCNQ nitrogen and crown-ether
carbon atoms20 suggest that 4 does indeed provide a
reasonable model for a truly isolated TCNQ dimer.
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Supporting Information Available: Full details of the
structure solution for 4, including tables of fractional atomic
coordinates, selected interatomic distances, bond and torsion
angles, and anisotropic temperature factors together with
additional figures showing the numbering scheme used for
each structural fragment of 4 and views of the CN‚‚‚H close
contacts in 5 (11 pages); observed and calculated structure
factors (27 pages). Ordering information is given on any
current masthead page.
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